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Outline	  of	  the	  Presentation	  
•  Current experimental capabilities 
•  Complementary nature of computational and experimental work 
•  Traditional data analysis, its roots, and its pitfalls 
•   Examples of modern data analysis techniques 

–  Spatio-temporal analysis 
–  Structure identification 
–  Modal decomposition 

•  Concluding remarks 
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Current	  Experimental	  Capabilities	  
•  Flow-field visualization and measurements 

–  Qualitative techniques such as schlieren imaging 
–  Quantitative measurements such as PIV 

•  Irrotational-field and far-field measurements 
–  Irrotational-field signature of flow (primarily large-scale structures) 
–  Far-field (radiated noise) 

•  Contact surface visualization and measurements 
–  Surface flow visualization (e.g. oil flow visualization) 
–  Surface pressure measurements (traditional point-wise low- and high-

temporal resolution pressure, PSP) 
–  Surface shear stress measurements 
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Complementary	  Computational	  &	  Experimental	  Work	  

•  Occasional claims 
–  “soon wind tunnels will be unnecessary” 
–  “soon we will measure 3-D, time-resolved kinematic and thermodynamic 

properties” 

•  Well planned and coordinated experimental and 
computational work is the best approach and can provide a 
wealth of important information unavailable through either 
approach individually 
–  Coordination and collaboration must start at  the experimental design 

stage 
–  Both sides must leave their comfort zone, get engaged, and learn a little 

about the other’s work 
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Traditional	  Data	  Analysis,	  Its	  Roots,	  and	  Pitfalls	  
•  Pre 1970s discovery of large-scale structures (in high Re # 

flows), fluctuations in turbulent flows were considered to be 
stochastic in nature 

•  With this assumption, properties such as mean flow, Reynolds 
stresses, PDF of fluctuations, and spectral distribution should 
provide all the needed info on the nature of the flow – recall 
that we initially had hot-wire, then along came LDV 

•  Other parameters, such as skewness, flatness, spatial/temporal 
correlations, and coherence, provided additional information 
(though the last two required multiple measurement locations 
and/or time-resolved measurements)   

 

6	  



arc.osu.edu	  

Large-‐Scale	  Structures	  and	  Their	  Dynamics	  
•  Serendipitous discovery of large-scale structures in the 1970s 

changed the traditional view and highlighted the need for 
additional analysis and measurements 

•  These large-scale structures become “less organized” in high-
speed and high Reynolds number flows and understanding 
their dynamics becomes much more challenging 

•  Control of their dynamics, for both altering their behavior and 
understanding their dynamics, is becoming possible and 
extremely important  

•  The lack of proper probing and understanding of their dynamics 
could lead to incorrect/misleading conclusions – the 
following slides provide an example of this 
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Contribution	  of	  Large-‐Scale	  Structures	  to	  Jet	  Noise	  and	  
Near-‐Mield	  Unsteady	  Pressure	  	  

•  Noise associated with large-scale flow structures radiates in peak-
noise direction); and the peak noise is 10 to 20 dB higher 

•  Irrotational-field signature of large-scale structures is much more 
revealing   
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Tam	  et	  al.,	  2008	  	  
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Contribution	  of	  Large-‐Scale	  Structures	  to	  Jet	  Noise	  	  
•  Shallow-angle noise consists of long-lived, intermittent 

peaks that are well captured by a wavelet transformation 
•  Defined by: events width, δti (with mean of      ), time between 

two events, Ti (with mean of      ), and event amplitude, Ai 

•  An extensive data base from NASA Glenn (James Bridges 
and Cliff Brown) was used 
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Kearney-‐Fisher	  et	  al.,	  2013	  

(Hileman	  et	  al.,	  2005)	  
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Contribution	  of	  Large-‐Scale	  Structures	  to	  Jet	  Noise	  	  
•  Time-domain reconstruction using only modeled peak noise 

events is used to determine the spectrum 
•  Spectra are well reconstructed for the peak noise portions 

of the low angles across a wide range of jet diameters, 
Mach numbers, and temperatures 
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•  Reconstruction uses only 
13% of data (omits 87% 
of the signal ) 

•  This was a major piece of 
missing information on 
jet noise for nearly 50 
years 

 

Kearney-‐Fisher	  et	  al.,	  2013	  
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Outline	  of	  the	  Presentation	  
•  Current experimental capabilities 
•  Complementary nature of computational and experimental work 
•  Traditional data analysis, its roots, and its pitfalls 
•   Examples of modern data analysis techniques 

–  Spatio-temporal analysis 
–  Structure identification 
–  Modal decomposition 

•  Concluding remarks 
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Spectral	  Analysis	  Shortcomings	  

12	  

•  Trigonometric basis functions 
are simple to use, but this set of 
basis functions significantly 
limits the analysis because it: 
-  Is periodic for all time, 

thus removing all temporal 
information 

•  Spatio-temporal analysis provides 
a better picture of the frequency 
content in the flow 
-  Observe the first 5 Rossiter 

modes and their strength & 
persistence in time  
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Spatio-‐Temporal	  Analysis	  
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•  Wavelet analysis 
-  Temporally bounded basis 

functions provide temporally 
resolved transformations 

-  Various mother wavelets allow 
different physical phenomena 
to be highlighted 

•  In complex flow fields (e.g. jet 
near field) which contain 
important discreet events, 
these properties can help to 
correctly interpret the results 

 

Morlet	  Wavelet	  

Paul	  Wavelet	  
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Spatio-‐Temporal	  Analysis	  Limitations	  
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•  Decompositions with a pre-
defined set of basis 
functions highlight data 
features with shape 
similar to the basis 
functions 

•  This can yield misleading 
results in complex flow 
fields and emphasizes the 
need to use multiple 
analysis techniques on any 
data set 

 

Morlet	  Wavelet	  

Mexican-‐Hat	  Wavelet	  



arc.osu.edu	  

Spatio-‐Temporal	  Analysis	  Limitations	  

18	  

•  Decompositions with a pre-
defined set of basis 
functions highlight data 
features with shape 
similar to the basis 
functions 

•  This can yield misleading 
results in complex flow 
fields and emphasizes the 
need to use multiple 
analysis techniques on any 
data set 
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Morlet	  Wavelet	  Scalogram	  

Mi	  et	  al,	  2005	  
Mexican-‐Hat	  Wavelet	  Scalogram	  

Mi	  et	  al,	  2005	  
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Structure	  IdentiMication	  -‐	  Traditional	  Techniques	  
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•  Structure dynamics play a major role in determining the 
overall flow behavior 

•  Vortex/structure identification is therefore an important part of 
data analysis 

•  Traditional methods such as vorticity are easily confounded 
by shear, a commonplace feature in complex flows 
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Structure	  IdentiMication	  -‐	  Modern	  Techniques	  
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•  Critical Point Methods 
-  Δ-criterion/Swirling 

Strength 
-  Q-criterion 
-  λ2-criterion 

•  These methods seek to 
locate regions that are 
part of a vortex – involve 
1st principles based metrics 
more complex than vorticity 
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Structure	  IdentiMication	  –	  Limitations	  
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•  The use of spatial 
gradients of velocity makes 
the critical point based 
techniques susceptible to 
experimental noise 

•  Most techniques provide a 
metric without a physically 
apparent threshold for 
defining vortex size: this 
leads to ambiguity 

Speth	  and	  Gaitonde,	  2014	  
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Modal	  Decomposition	  –	  POD	  
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•  Proper Orthogonal 
Decomposition (POD) is a 
decomposition into orthogonal, 
energy based data-specific basis 
functions 
-  Basis function orthogonality 

makes POD good for reduced-
order modeling (i.e. few 
modes are required for a good 
reconstruction) for feedback 
flow control 

-  Energy based basis functions 
do not necessarily correspond 
to physically relevant 
dynamics or phenomena 

 

mode	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  mode	  2	  

mode	  3	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  mode	  4	  

mode	  5	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  mode	  6	  

Hileman	  et	  al.,	  2005	  
Mach	  1.3	  jet	  
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Flow	  Structure	  Reconstruction	  –	  Multiple	  Techniques	  
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•  We have recently developed 
and used a new method to 
reconstruct full-field, time-
resolved data from: 
•  Full-field snapshots (PIV) 
•  Time-resolved pressure 

measurements 
•  Artificial neural networks 

•  Applied to a jet flow field 
(along with swirling strength) 
clearly shows flow structures 
propagation, interaction, 
and pairing in the shear 
layer (a new discovery) 

Crawley	  et	  al.,	  2016	  
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Concluding	  Remarks	  
•  Experimental capabilities, data analysis, and the research 

community’s understanding of the flow physics are continually 
improving 

•  It has become increasingly clear that: 
–  There is no panacea in turbulent flow analysis – no single tool or 

approach is sufficient 
–  Conventional data analysis techniques limit the information that 

can be gleaned from modern measurements and, in some cases, 
could produce misleading trends/conclusions 

–  Modern data analysis and decomposition techniques are improving 
and becoming more useful in providing a better understanding of 
the flow physics 

•  Increased collaboration between computational and 
experimental work could significantly improve our 
understanding and insight into flow physics and control 
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